VRF Technology and Application

AIR CONDITIONING TECHNOLOGIES

By: David Kim, P.Eng Engineering Manager- LG Electronics Canada

Net-Zero Emissions by 2050

What is Net-Zero?

Achieving net-zero emissions means our economy either **emits no greenhouse gas emissions** or **offsets its emissions**, for example, through actions such as tree planting or employing technologies that can capture carbon before it is released into the air.

Canada has joined over 120 countries in committing to be net-zero emissions by 2050, including all other G7 nations (United Kingdom, United States, Germany, Italy, France, and Japan)

2030 Emissions Reduction Plan: Clean Air, Strong Economy

The Government of Canada **published the country's 2030 Emissions Reduction Plan in March 2022**. The plan reflects input from provinces, territories, Indigenous Peoples, the Net-Zero Advisory Body, and interested Canadians on what is needed to reach Canada's more ambitious climate **target of 40-45% emissions reductions by 2030**.

Electrification

National greenhouse gas emissions

• Canada's total GHG emissions in 2022 were 708 Mt CO2 eq, a 7% decrease from 761 Mt CO2 eq in 2005

VRF OVERVIEW

Outline of System

VRF = Variable Refrigerant Flow

"A VRF Multi split system is a split-system air conditioner or heat pump with a single refrigerant circuit, one ore more outdoor units, at least one variable-speed compressor or other compressor combination that can vary system capacity by three or more steps, and multiple indoor fan-coil units that are individually metered and individually controlled by an integrated control device and common communication network"

2020 ASHRAE Handbook - HVAC Systems and Equipment

Outline of System

VRF = Variable Refrigerant Flow

A VRF system is a single refrigerant circuit with:

- One ODU connected to several IDUs
- IDU variety selection of styles and sizes
- Independent IDU operation
- Independent zone control
- Variable speed compressor(s) (adjusts to building load)
- Simple communication wiring between ODU and IDUs
- Long piping capabilities
- Simultaneous Heating and Cooling
- Built-in controls
- Energy efficient

Type Changeover Outdoor Unit

System Layout

Heat Pump System Concept

Heat Recovery System Concept

Sizing up VRF

At Least 32% Smaller Footprint At Least 49% Lighter Weight

Features of VRF System

initial cost

person.

operation costs

Air-cooled VRF system serves various kind of benefits to the customers.

Low Initial Investments • Simple components and refrigerant piping work saves Lower Maintenance cost • Simple maintenance saves maintaining labor cost and the VRF System Maximize Available Space Smaller equipment's installation space increases available space Low Operation Costs High efficient inverter heat pump system decreases

Total Air Conditioning

- Individual cooling & heating
- Ventilation & humidification & pressurization (AHU)
- Air guality control (Filter, CO₂ sensor)

Environmental Friendly

- High energy efficient Inverter control
- Lower electricity consumption lowers CO2 emission amount
- "0" ODP refrigerant R410A system

User Convenience

- Individual indoor unit's operation is controllable according to the user's comfort
- Integrated Control control is possible through central control or BMS system

Reasonable Payment

• Using cost is calculated precisely by checking each unit's detail operation

VRF PRODUCT APPLICATION

- Air source Systems
- Water Source Systems

VRF Outdoor Unit Equipments

Air Source

- Modular
- 3 Phase High Capacity
- Top Discharge
- Airflow required

- Non Modular
- 1 Phase Low Capacity
- Side Discharge
- Airflow Required

- Modular
- 3 Phase High Capacity
- Waterflow Required
- Indoor Install

Air Source VRF

Air Source VRF

• Vapor Injection

Technologies for High Heating Capacity

> Vapor Injection uses a two-stage compression effect, which provide efficient heating in extremely cold environment.

Heating- New Technologies

VRF systems may be stopped heating operation by several reasons, such as oil recovery and defrost. Heating operation down time can be reduced by several advanced technologies.

Auxiliary Heater Control

Auxiliary heater can be connected to each indoor unit to provide additional heating while heating capacity of heat pump is decreased

Type 1: Built in E-Heater with V.AHU Type

Air Source VRF

Heating Season Temperature Hours (October 2023 – April 2024)

London Heating Season

https://climate.weather.gc.ca/index_e.html

Performance of 12T "L" company VRF unit at 70°F Indoor Temp @ 100% combination ratio

Water Source VRF

Chiller system

Cons

- Large mechanical room requirement
- Need to additional device for individual room control and proper operation cost distribution
- Inefficient in low part-load

Pros

Stability

Applicability

- Free from the external environment
- No need the defrosting operation

• Applicable to large buildings

Aesthetic façade design

Pros

Convenience

- Able to control individual room without additional device
- Easy to distribute proper operation cost to each room than chiller system

Economic

- Expandability of mechanical system
- Reduce installation area
- Efficient in low part-load
- Energy saving by simultaneous operation

Air-cooled VRF system

Cons

- In case of installing indoor, require louvers.
- Influenced by external environment

Water Sources vs. Air Source

Comparison	Water Source VRF	Air Source VRF	
Defrost	Not required	Required	
Performance Derating	N/A	Applicable	
Install location	Indoor Only	Outdoor (recommended) or Indoor with certain conditions	
Water Systems	Required	Not Required	
Efficiency	Typical Higher COPs (depends on water system)	Typically lower at colder temperatures	
Auxiliary Heat	Not Required	Required	
Heat Recovery	Indoor Unit / Outdoor Unit	Indoor Unit only	
Geothermal	Yes	No	
Refrigerant Amount	Less	More	

Stable Operation from Various Heat Sources

Multi V Water 5 can obtain stable temperature water from various heat sources.

Integration with AHU

Water Heating Options

VRF Controls

Dry Contact	Central Controller	Programmable Thermostat	Special A	pplication
External Contact Signal Control	Monitor Entire VRF system	Individual Indoor Unit Control	Special Contro	l Applications
ON OFF				
 Dry Contact Controller Single Contact Point Dual Contact Point 3rd Party Thermostat Modbus Control 	 BMS Integration (BACnet, Modbus TCP) Interlock using DI / DO port Manage groups of VRF system 	 Individual Indoor Unit Control Indoor unit scheduling 	Power Distribution Williary Heater Relay	3rd Party DX Coil Control

A2L Refrigerant

New Refrigerant Changes Air Solution

Tae Jun Kim Engineering Manager, P.Eng LG Electronics Canada 7

Why?

The Montreal Protocol (1987)

Montreal Protocol was created to phase down hydrochlorofluorocarbons (HCFCs)

- HCFCs are broken down by strong ultraviolet radiation within stratosphere and releases chlorine atoms which reacts with ozone molecules.

One chlorine atom can destroy over 100,000 ozone molecules.

Kigali Amendment (2016)

Kigali Amendment was created to phase down HFCs that have high GWP

- High Global Warming Potential causes Greenhouse effect

CO₂ has GWP rating of 1 R410a has GWP rating of 2,088

North America R410a Phase out Timeline (EPA & ECCC)

EPA

Refrigeration, Air Conditioning, and Heat Pump Systems*					
Subsector	Systems	Global Warming Potential Limit or Prohibited Substances	Installation Compliance Date⁵		
Stationary air conditioning and	Residential and light commercial air conditioning and heat pump systems	700	January 1, 20256		
neat pumps	Variable refrigerant flow systems	700	January 1, 2026		
Chillers	Industrial process refrigeration with exiting fluid below -50 °C (-58 °F)	Not covered	Not covered		
	Industrial process refrigeration with exiting fluid from -50 °C (-58 °F) to -30 °C (-22 °F)	700	January 1, 2028		
	Industrial process refrigeration with exiting fluid above -30 °C (-22 °F)	700	January 1, 2026		
	Comfort cooling	700	January 1, 2025		

⁶New systems with a GWP above 700 can be installed until January 1, 2026, so long as all components are manufactured or imported prior to January 1, 2025 (refer to the <u>Interim Final</u> <u>Rule</u> for additional details).

HRAI proposed following dates to ODSHAR (Ozone-Depleting Substance sand Halocarbon Alternatives Regulations) for R410a phase out in Canada

- Comfort Heating / Cooling excluding VRF : Jan 1st 2026
- VRF / VRV : Jan 1st 2027

Additional Notes

- Unlimited sell through period after date of manufacture
- No restrictions for components servicing existing equipment in the Canadian market
- Unlimited manufacture and sale of replacement parts marked with "For Service Only"

A2L Refrigerant Specification

	R410A	R32	R454B
Composition	R32 50% / R125 50%	R32 100%	R32 68.9% / R1234yf 31.1%
Refrigerant classification	A1	A2L	A2L
Global Warming Potential	2088	675	466
Direct emissions (kg CO_2 eq.)	6,368	1,793 (↓72%)	1,468 (↓77%)
Indirect emissions (kg CO ₂ eq.)	74,496	70,775 (↓5%)	73,009 (↓2%)
Total emissions [LCCP] (kg CO ₂ eq.)	80,865	72,568 (↓10%)	74,478 (↓8%)
Charge amount (%)	100	75	92
Discharge Temperature (%)	100	110 - 119	105 - 107
Lower Flammability Limit (lb/1000 ft ³)	-	19.1	22.0
Refrigerant Concentration Limit (lb/1000 ft ³)	26	4.81	3.06
Consumer Cost (\$/lb)	\$10.14	\$10.52	\$28.36

Direct Emissions : Refrigerant Leak / Atmospheric degradation of refrigerants Indirect Emissions : Energy Consumption, Material / Refrigerant manufacturing, material / refrigerant recycling

🕒 LG

Safety Analysis

-Result : Only No.1's fire size is increased a little during in a brief space of time.

- \rightarrow No Explosion , Flame.
- 1) Flame length just increase in case of leakage at check position

Before leakage

After leakage

2) Data on No.1 location. R32 concentration exceeds LFL level between 110s and 125s which increases the flame size but does not cause chain reaction

LG Test

Standard

Standard	Detailed Standard	The moment you need this standard
UL 60335-1 UL 60335-2-40	 Safety regulation for the air conditioner Mandatory for customs, sales in US and Canada. Contains requirements <u>for construction, installation, service</u> <u>and transportation of flammable refrigerants</u> 	Product Installing
ASHRAE 15	 For USA procedures made by ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Procedures for operating equipment and systems when using refrigerants 	Product Installing
CSA B52	 For Canada A minimum requirements made by CSA group It is indicated for the design, construction, installation, and maintenance of mechanical refrigeration systems 	Product Installing

Standard

CSA B52:23

Mechanical Refrigeration Code

Major Update on A2L Refrigerant usage for human comfort

4.5.5 High-probability systems using A2L refrigerants for human comfort

4.5.5.2 Refrigerant systems with air circulation (ASHRAE 15 : 7.6.1.1) $EDVC = V_{eff} \times LFL \times CF \times F_{occ}$ EDVC = Effective disperal volume charge (lb) $V_{eff} = Effective disperal volume (ft^3)$

CF = Concentration factor, value of 0.5

 $F_{occ} = Occupancy adjustment factor (Non institutional : 1, Institutional : 0.5)$

This is an equation to calculate the Effective Dispersal Volume Charge (EDVC) when there is either

- a. Air circulation initiated by a refrigerant detector
- b. Continuous air circulation

Ex) 1,000ft³ Room $EDVC = V_{eff} \times LFL \times CF \times F_{occ}$ $EDVC = 1,000ft^3 \times 19.1 \, lb/1000ft^3 \times 0.5 \times 1$ $EDVC = 9.55 lb/1,000ft^3$

If there is an air circulation initiated by a refrigerant detector, A2L refrigerant amount allowed in a room is now doubled

Major Update on A2L Refrigerant usage for human comfort

Annex N Effective Dispersal Volume Calculation

N2.3 Natural ventilation opening for Group A2L, A2, or A3 refrigerants (ASHRAE 15 : 7.2.3.2.2)

$$\begin{aligned} A_{vent} &= \frac{m_{rel} - m_{room}}{LFL \times 0.417} \times \sqrt{\frac{A}{g \times m_{room}} \times \frac{M}{M - 29}} \\ A_{vent} &= \text{minimum area of a permant opening } (ft^2) \\ m_{rel} &= \text{releasable refrigerant charge (lb)} \\ m_{room} &= \text{allowable refrigerant charge of an individual room (lb)} \\ LFL &= \text{Lower flammability limit } (lb/1000ft^3) \\ A &= \text{actual area of the individual room} (ft^2) \\ g &= \text{acceleration due to gravity, } (32.2ft/s^2) \\ M &= \text{mrelative molar mass of the refrigerant } (R32 = 52) \end{aligned}$$

Annex N.3 Connected spaces via ducted air distribution system

ASHRAE15 : 7.2.3.3 Connected spaces via ducted air distribution system

N.3.1 General

Where a refrigeration system, or a part therof, is located within an air distribution duct system, or in a space served by an air distribution duct system, the entire air distribution system shall be analyzed to determine the worst-case distribution of leaked refrigerant. The effective dispersal volume in which the leaked refrigerant disperses shall be used to determine the EDVC in the system, subject to the criteria in Clauses N.3.1 to N.3.4

N.3.3 Plenum : The volume of an air ceiling plenum or floor plenum shall be included when calculating the EDV where the plenum space is a part of the refrigeration system air distribution system

N.3.4 Supply and return ducts : The volume of the supply and return ducts shall be included when calculating the effective dispersal volume

Annex Q Mechanical ventilation for high probability systems using A2L

ASHRAE15 : 7.6.4 Mechanical Ventilation

 $Q_{min} = \frac{Q_{req}}{C_{LFL}}$ Must refer to table Q.1 & Q2 (ASHRAE 15 Table 7-4 & 7-5) $Q_{Req} = \frac{m_s - EDVC}{4 \times LFL} \times SF_{vent}$ If m_s and EDVC value is known, does not have to refer to table Q1

 $Q_{min} = Required minimum mechanical ventilation airflow rate (CFM)$

 $Q_{req} = Required ventilation as determined from table Q1(ASHRAE 15 Table 7 - 4)$

 Q_{LFL} = lower flammability limit conversion factor as determined from table Q2 (ASHRAE 15 Table 7 - 5)

 $m_s = largest system refrigerant charge from independent circuit (lb)$

 $4 = Assumed \ leak \ time \ (4 \ minutes)$

 $SF_{vent} = Safety factor, value of 2$

Example

If the total charge of the system is 60lbs EDVC of the room is 27.5lbs (2,880ft³)

$$Q_{Req} = \frac{60 - 27.5}{4 \times 19.1} \times 2$$
$$Q_{Req} = 850CFM$$

It requires 850CFM mechanical fan to comply with CSA B52

Excluded (m _s – E	l Charge DVC) ^b	Qr	eq	Excluded (m _s - E	l Charge DVC) ^b	Qr	eq
lb	kg	ft ³ /min	m^3/h	lb	kg	ft ³ /min	m ³ /h
3.8	1.7	100	170	91.8	41.6	2400	4080
7.6	3.5	200	340	95.6	43.4	2500	4250
11.5	5.2	300	510	99.4	45.1	2600	4420
15.3	6.9	400	680	103.2	46.8	2700	4590
19.1	8.7	500	850	107.1	48.6	2800	4760
22.9	10.4	600	1020	110.9	50.3	2900	4930
26.8	12.1	700	1190	114.7	52.0	3000	5100
30.6	13.9	800	1360	118.5	53.8	3100	5270
34.4	15.6	900	1530	122.4	55.5	3200	5440
38.2	17.3	1000	1700	126.2	57.2	3300	5610
42.1	19.1	1100	1870	130.0	59.0	3400	5780

Table 7-4 Required Ventilation for A2L Systems a

Annex O Releasable Refrigerant Charge Calculation

- O.1 Releasable refrigerant charge calculation (ASHRAE 15 : 7.3.4.3)
- M_{rel} = Releasable Refrigerant Charge

$$m_{rel} = (t_{r1} \times 0.0062) + m_{r2} + m_{r3}$$

 t_{r1} = time before the leak is detected

0.0062 = leakage rate in lb/s

 m_{r2} = leakage between the detection of the leak and the closing of the safety shutoff valve (lb) $m_{r2} = t_{close} \times 0.0062$

 t_{close} = time from when a leak is detected until the saftey shutoff valve closes m_{r3} = leakage in the piping downstream of the safety shutoff valve after the valve is closed (lb)

$$m_{r3} = \sum V_{pipe} \times \rho_{ref}$$

 V_{pipe} = internal volume of each section of the piping and HEX downstream (ft³) ρ_{ref} = density of the refrigerant in each section of pipe downstream (lb/ft^3)

Depending on the m_{rel} amount, design may not require any natural ventilation

Standard

UL60335-2-40

International Standard

UL60335-2-40

CSA B52 code regulates the refrigerant based on the volume. UL60335-2-40 regulates the refrigerant based on the area.

NOT TO RATIO

UL60335-2-40 4th

Or

Regulation with shutoff valve

4th Edition

shut-off valve : $m_{rel} < 0.5 \times LFL \times H_r \times A$ Before leak is detected Detection-closing the valve After closing the valve $m_{rel} = t_{rl} \times 0.0062 + 0.0062 \times t_{cl} + \sum V_{part,i} \times \rho_{part,i}$ m_{rel} =Max(Releasable charge in heating/cooling /off mode) Releasable charge in heating/cooling mode $= L_{valve \sim IDU} x TD_{tube \ volume/length} x \rho_{density} + L_{valve \sim IDU} x TD_{tube \ volume/length} x \rho_{density} + V x \rho_{mix} + 0.204$ Releasable charge in off mode

= L_{valve~IDU}x TD_{tube volume/length}+L_{valve~IDU}x TD_{tube volume/length}xρ_{density}+V x ρ_{mix} +0.204] [cooling /Off mode] $\rho_{mix} = 0.2 \times \rho_{LIQ} + 0.8 \times \rho_{vap}$ [Heating mode] $\rho_{mix} = 0.4 \text{ x} \rho_{LIQ} + 0.6 \text{ x} \rho_{vap}$

Safety device installation

7

Example system with R32 VRF system

Assumption Ceiling height : 10ft Minimum room sqft : 378ft²

Indoor Units	: 18 of 42
Combination Ratio	: 288.0 of 264.0 (109%)
Total Pipe	: 681.5 of 3280.8 ft
ODU factory charge	: 49.80 lbs
Additional Refrigerant	: 48.51 lbs
Total refrigerant	: 98.32 lbs
Minimum room volume	: 3781.44 ft ^s
(Based on 26.0 lbs / 1000.0) ft³)

UL603325-2-40 4th

 $\label{eq:pmix} \begin{array}{l} \mbox{[cooling mode]} \ \rho_{mix} = 0.2 \ x \ \rho_{LIQ} \ + 0.8 \ x \ \rho_{vap} \\ \\ \mbox{[Heating /OFF mode]} \ \rho_{mix} = 0.4 \ x \ \rho_{LIQ} \ + 0.6 \ x \ \rho_{vap} \end{array}$

Releasable charge

 $= L_{valve \sim IDU} x TD_{tube \ volume/length} x \rho_{density} + L_{valve \sim IDU} x TD_{tube \ volume/length} x \rho_{density} + V x \rho_{mix} + 0.00045 \ (Leak \ during \ response \ time)$

Heating Releasable Charge

= 45ft x 0.000205ft³/ft x 55.75lbs/ft³ + 45ft x 0.00108ft³/ft x 4.57lbs/ft³ + 0.056ft³ x 45.51lbs/ft³ + 0.0045

= 0.514lbs + 0.222lbs + 1.402lbs + 0.00045

= 2.14lbs

Cooling Releasable Charge

 $= 45 ft \times 0.000205 ft^3/ft \times 63.68 lbs/ft^3 + 45 ft \times 0.00108 ft^3/ft \times 1.89 lbs/ft^3 + 0.056 ft^3 \times 38.96 lbs/ft^3 + 0.0045 ft^3/ft \times 1.89 lbs/ft^3 + 0.0056 ft^3/ft \times 1.89 lbs/ft^3 + 0.0045 ft^3/ft \times 1.89 lbs/ft^3/ft \times 1.89 lbs/ft \times 1.89 lbs/ft^3/ft \times 1.89 lbs/ft^3/ft \times 1.89 lbs/ft \times 1.89$

= 0.506lbs + 0.092lbs + 0.798lbs + 0.00045

= 1.40lbs

Off Releasable Charge

= 45ft x 0.000205ft³/ft x 60.26lbs/ft³ + 45ft x 0.00108ft³/ft x 2.87lbs/ft³ + 0.056ft³ x 48.78lbs/ft³ + 0.0045

- = 0.556lbs + 0.139lbs + 0.803lbs + 0.00045
- = 1.50lbs

 $m_{\rm rel}$ = Max(Releasable charge in heating/cooling /off mode) $m_{\rm rel}$ = 2.14lbs

Assumptions

R32 Refrigerant amount = R410a amount : 98.32lbs Pipe diameter and length are identical to R410a Ceiling height : 9ft V.AHU sitting on 3ft stand Shutoff Valve Kit is installed at the Heat Recovery Unit (45ft) Liquid Pipe : 1/4" Gas Pipe : 1/2" Type L Copper

Volume per feet Liquid : 0.00021ft³/ft Vapor : 0.00108 ft³/ft

IDU : ARNU123NJA4 Coil Volume : 0.056ft³ (1600.9cm³)

Refrigerant Type	Operation	State	Temperature (°C)	Density (lbs/ft3)
R32	Heating	Vapor	40.6	4.57
R32	Heating	Liquid	40.6	55.75
R32	Heating	Mix	-	25.04
R32	Cooling	Vapor	10	1.89
R32	Cooling	Liquid	43.3	54.8
R32	Cooling	Liquid	10	63.68
R32	Cooling	Mix	-	14.25
R32	Off	Vapor	23.9	2.87
R32	Off	Liquid	23.9	60.26
R32	Off	Mix	-	14.35

Area calculation for a room with safety alarm

 $A_{min} = m_c / (0.50 \text{ x LFL x } H_{IDU})$

 $A_{min} = 2.14 \text{ lbs} / (0.50 \text{ x} 19.1 \text{ lbs}/1000 \text{ ft}^3 \text{ x} 3 \text{ ft})$

 $A_{min} = 74.7 ft^2$

Releasable charge

 $= (t_{r1} \times 0.0062) + m_{r2} + m_{r3}$

Issue with CSA B52 code : It does not mention the ratio between Liquid and Gas at Mixed condition

Assumption : Use the same mix condition as UL60335-2-40 3rd or 4th (worst case)

[4th]

 $\begin{array}{l} \rho_{\text{mix.heating}} = 25.04 \text{lbs/ft}^3 \\ \rho_{\text{mix.cooling}} = 14.25 \text{lbs/ft}^3 \\ \rho_{\text{mix.off}} = 14.35 \text{lbs/ft}^3 \end{array}$

For this example, we will use the heating density of UL 60335-2-40 3rd Edition

Total Refrigerant Leaked

$$\begin{split} & m_{rel} = (t_{r1} \ x \ 0.0062) + m_{r2} + m_{r3} \\ & t_{r1} = 30 \ \text{secs as per CSA B52} : 23 \ \text{Annex P P.1 g}) \\ & t_{r1} = 15 \ \text{secs as per CSA B52} : 23 \ \text{Annex P P.2} \\ & m_{rel} = (30 \ x \ 0.0062 \text{lbs/s}) + (15 \ x \ 0.0062 \text{lbs/s}) + (45 \text{ft } x \ 0.000205 \text{ft}^3/\text{ft } x \ 55.75 \text{lbs/ft}^3 + 45 \text{ft } x \ 0.00108 \text{ft}^3/\text{ft } x \ 4.57 \text{lbs/ft}^3 + 0.056 \text{ft}^3 \ x \ 45.51 \text{lbs/ft}^3 \) \\ & m_{rel} = 0.186 \text{lbs} + 0.093 \text{lbs} + 0.514 \text{lbs} + 0.222 \text{lbs} + 2.549 \text{lbs} \\ & \textbf{m}_{rel} = \textbf{3.564 lbs} \end{split}$$

EDVC Calculation EDVC = V_{eff} x LFL x CF x F_{occ}

3.564lbs = V_{eff} x 19.1lbs/1000ft3 x 0.5 x 1

With condition of fan initiating when leak is detected

 $V_{eff} = 373.2 ft^3$

Assumptions

R32 Refrigerant amount = R410a amount : 98.32lbs Pipe diameter and length are identical to R410a Ceiling height : 9ft V.AHU sitting on 3ft stand Shutoff Valve Kit is installed at the Heat Recovery Unit (45ft) Liquid Pipe : 1/4" Gas Pipe : 1/2" Type L Copper

Volume per feet Liquid : 0.00021ft³/ft Vapor : 0.00108 ft³/ft

IDU : ARNU123NJA4 Coil Volume : 0.056ft³ (1600.9cm³)

Thank you